Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comprehensive Kinetic Analysis of Influenza Hemagglutinin-Mediated Membrane Fusion: Role of Sialate Binding

Identifieur interne : 003583 ( Main/Exploration ); précédent : 003582; suivant : 003584

Comprehensive Kinetic Analysis of Influenza Hemagglutinin-Mediated Membrane Fusion: Role of Sialate Binding

Auteurs : Aditya Mittal [États-Unis] ; Joe Bentz [États-Unis]

Source :

RBID : ISTEX:3DBDB4BF1C90E19B359591725B3D1ABBF8A1504C

English descriptors

Abstract

Abstract: The data of Danieli et al. (J. Cell Biol. 133:559–569, 1996) and Blumenthal et al. (J. Cell Biol. 135:63–71, 1996) for fusion between hemagglutinin (HA)-expressing cells and fluorescently labeled erythrocytes has been analyzed using a recently published comprehensive mass action kinetic model for HA-mediated fusion. This model includes the measurable steps in the fusion process, i.e., first pore formation, lipid mixing, and content mixing of aqueous fluorescent markers. It contains two core parameters of the fusion site architecture. The first is the minimum number of aggregated HAs needed to sustain subsequent fusion intermediates. The second is the minimal number of those HAs within the fusogenic aggregate that must undergo a slow “essential” conformational change needed to initiate bilayer destabilization. Because the kinetic model has several parameters, each data set was exhaustively fitted to obtain all best fits. Although each of the data sets required particular parameter ranges for best fits, a consensus subset of these parameter ranges could fit all of the data. Thus, this comprehensive model subsumes the available mass action kinetic data for the fusion of HA-expressing cells with erythrocytes, despite the differences in assays and experimental design, which necessitated transforming fluorescence dequenching intensities to equivalent cumulative waiting time distributions. We find that HAs bound to sialates on glycophorin can participate in fusion as members of the fusogenic aggregate, but they cannot undergo the essential conformational change that initiates bilayer destabilization, thus solving a long-standing debate. Also, the similarity in rate constants for lipid mixing and content mixing found here for HA-mediated fusion and by Lee and Lentz (Proc. Natl. Acad. Sci. U.S.A. 95:9274–9279, 1998) for PEG-induced fusion of phosphatidylcholine liposomes supports the idea that subsequent to stable fusion pore formation, the evolution of fusion intermediates is determined more by the lipids than by the proteins.

Url:
DOI: 10.1016/S0006-3495(01)75806-7


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comprehensive Kinetic Analysis of Influenza Hemagglutinin-Mediated Membrane Fusion: Role of Sialate Binding</title>
<author>
<name sortKey="Mittal, Aditya" sort="Mittal, Aditya" uniqKey="Mittal A" first="Aditya" last="Mittal">Aditya Mittal</name>
</author>
<author>
<name sortKey="Bentz, Joe" sort="Bentz, Joe" uniqKey="Bentz J" first="Joe" last="Bentz">Joe Bentz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3DBDB4BF1C90E19B359591725B3D1ABBF8A1504C</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0006-3495(01)75806-7</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-ZH27T4SL-K/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001842</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001842</idno>
<idno type="wicri:Area/Istex/Curation">001842</idno>
<idno type="wicri:Area/Istex/Checkpoint">000F05</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000F05</idno>
<idno type="wicri:doubleKey">0006-3495:2001:Mittal A:comprehensive:kinetic:analysis</idno>
<idno type="wicri:Area/Main/Merge">003621</idno>
<idno type="wicri:Area/Main/Curation">003583</idno>
<idno type="wicri:Area/Main/Exploration">003583</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Comprehensive Kinetic Analysis of Influenza Hemagglutinin-Mediated Membrane Fusion: Role of Sialate Binding</title>
<author>
<name sortKey="Mittal, Aditya" sort="Mittal, Aditya" uniqKey="Mittal A" first="Aditya" last="Mittal">Aditya Mittal</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Bioscience and Biotechnology, Drexel University, Philadelphia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bentz, Joe" sort="Bentz, Joe" uniqKey="Bentz J" first="Joe" last="Bentz">Joe Bentz</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Bioscience and Biotechnology, Drexel University, Philadelphia</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biophysical Journal</title>
<title level="j" type="abbrev">BPJ</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">81</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1521">1521</biblScope>
<biblScope unit="page" to="1535">1535</biblScope>
</imprint>
<idno type="ISSN">0006-3495</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-3495</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Apposition</term>
<term>Aqueous contents</term>
<term>Assay</term>
<term>Average number</term>
<term>Average value</term>
<term>Bentz</term>
<term>Bilayer</term>
<term>Binding reaction</term>
<term>Biochemistry</term>
<term>Biol</term>
<term>Biophys</term>
<term>Biophysical</term>
<term>Biophysical journal</term>
<term>Biophysical journal mittal</term>
<term>Blumenthal</term>
<term>Cell biol</term>
<term>Cell line</term>
<term>Cell lines</term>
<term>Cell surface</term>
<term>Chernomordik</term>
<term>Conformational</term>
<term>Conformational change</term>
<term>Conformational changes</term>
<term>Danieli</term>
<term>Data sets</term>
<term>Dequenching</term>
<term>Detergent lysis</term>
<term>Different values</term>
<term>Drexel university</term>
<term>Ellens</term>
<term>Error bars</term>
<term>Experimental differences</term>
<term>Experimental noise</term>
<term>First fusion pore</term>
<term>First fusion pore formation</term>
<term>Fluorescence dequenching</term>
<term>Fusion</term>
<term>Fusion intermediates</term>
<term>Fusion peptides</term>
<term>Fusion process</term>
<term>Fusion rate</term>
<term>Fusion site</term>
<term>Fusogenic</term>
<term>Fusogenic aggregates</term>
<term>Glycophorin</term>
<term>Gp4f</term>
<term>Gp4f cell line</term>
<term>Gp4f cell lines</term>
<term>Gp4f cells</term>
<term>Hab2</term>
<term>Hab2 cell line</term>
<term>Hab2 cells</term>
<term>Hemagglutinin</term>
<term>Hill coefficient</term>
<term>Hydrophobic defect</term>
<term>Influenza</term>
<term>Influenza fusion</term>
<term>Influenza hemagglutinin</term>
<term>Influenza membrane fusion</term>
<term>Influenza virus</term>
<term>Influenza virus hemagglutinin</term>
<term>Initial ratio</term>
<term>Kinetic model</term>
<term>Kinetic parameters</term>
<term>Kinetics</term>
<term>Leikina</term>
<term>Lentz</term>
<term>Lipid</term>
<term>Lipid channel</term>
<term>Lipid channel formation</term>
<term>Lipid flow</term>
<term>Liposome</term>
<term>Markosyan</term>
<term>Melikyan</term>
<term>Membrane</term>
<term>Membrane fusion</term>
<term>Minimal fusion unit</term>
<term>Mittal</term>
<term>Nucleation</term>
<term>Nucleation reaction</term>
<term>Original data</term>
<term>Overall rate</term>
<term>Parameter</term>
<term>Parameter ranges</term>
<term>Parameter sets</term>
<term>Parameter space</term>
<term>Planar bilayer</term>
<term>Pore</term>
<term>Rate constants</term>
<term>Rbc</term>
<term>Receptor</term>
<term>Receptor binding</term>
<term>Redistribution</term>
<term>Relative fluorescence</term>
<term>Rmse</term>
<term>Sialate</term>
<term>Sialate binding</term>
<term>Sialates</term>
<term>Similar values</term>
<term>Skehel</term>
<term>Solid lines show</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Surface densities</term>
<term>Surface density</term>
<term>Target membrane</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The data of Danieli et al. (J. Cell Biol. 133:559–569, 1996) and Blumenthal et al. (J. Cell Biol. 135:63–71, 1996) for fusion between hemagglutinin (HA)-expressing cells and fluorescently labeled erythrocytes has been analyzed using a recently published comprehensive mass action kinetic model for HA-mediated fusion. This model includes the measurable steps in the fusion process, i.e., first pore formation, lipid mixing, and content mixing of aqueous fluorescent markers. It contains two core parameters of the fusion site architecture. The first is the minimum number of aggregated HAs needed to sustain subsequent fusion intermediates. The second is the minimal number of those HAs within the fusogenic aggregate that must undergo a slow “essential” conformational change needed to initiate bilayer destabilization. Because the kinetic model has several parameters, each data set was exhaustively fitted to obtain all best fits. Although each of the data sets required particular parameter ranges for best fits, a consensus subset of these parameter ranges could fit all of the data. Thus, this comprehensive model subsumes the available mass action kinetic data for the fusion of HA-expressing cells with erythrocytes, despite the differences in assays and experimental design, which necessitated transforming fluorescence dequenching intensities to equivalent cumulative waiting time distributions. We find that HAs bound to sialates on glycophorin can participate in fusion as members of the fusogenic aggregate, but they cannot undergo the essential conformational change that initiates bilayer destabilization, thus solving a long-standing debate. Also, the similarity in rate constants for lipid mixing and content mixing found here for HA-mediated fusion and by Lee and Lentz (Proc. Natl. Acad. Sci. U.S.A. 95:9274–9279, 1998) for PEG-induced fusion of phosphatidylcholine liposomes supports the idea that subsequent to stable fusion pore formation, the evolution of fusion intermediates is determined more by the lipids than by the proteins.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Mittal, Aditya" sort="Mittal, Aditya" uniqKey="Mittal A" first="Aditya" last="Mittal">Aditya Mittal</name>
</region>
<name sortKey="Bentz, Joe" sort="Bentz, Joe" uniqKey="Bentz J" first="Joe" last="Bentz">Joe Bentz</name>
<name sortKey="Bentz, Joe" sort="Bentz, Joe" uniqKey="Bentz J" first="Joe" last="Bentz">Joe Bentz</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003583 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003583 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:3DBDB4BF1C90E19B359591725B3D1ABBF8A1504C
   |texte=   Comprehensive Kinetic Analysis of Influenza Hemagglutinin-Mediated Membrane Fusion: Role of Sialate Binding
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021